UNCLASSIFIED

AD NUMBER

ADB183185

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; 1953.
Other requests shall be referred to
National Aeronautics and Space
Administration, Washington, DC.

AUTHORITY

NASA TR Server website

THIS PAGE IS UNCLASSIFIED




f
i .
|
(38 ey,
) o
N
N
i\-
)
!
1
]
i
l
{
)
f

TS

AD-B183 185

LR g

- NATIONAL ADVISORY COMMITTEE
~* FOR AERONAUTICS

e et

REPORT 1131

DEFLECTION AND STRESS ANALYSIS OF THIN
- ‘SOLID WINGS OF. ARBITRARY PLAN FORM
WITH PARTICULAR REFERENCE TO
‘ DELTA WINGS

By MANUEL STEIN, J, EDWARD ANDERSON,

and JOHN M. HEDGEPETH D "‘E‘ E { :

. £y ELECTE [
Y, APR111994H B

94-1“"79 . A
L




|
3

*3xodax aaoqe ayy

Ut nok 3uds Aysnorasxd Is0y3 Soerdax 03 ax® spawd X3puy asayy,

3431

Y3adadpay W uyop pue udsadpuy pxespy -p
SONIM VI13a
OL FONINAIAY UVINOIINVA HIIM WOd NVId X4VHLIgYY
JO SONIM QITO0S NIHL 40 SISXTVNV SSMLS ANV HOTTOTIIAq

‘urays (onuey Ag B

TETT IMOIFY VOVN

T d— 4 s it . s hoop

T "ON VIvyus

i
-




e e AR e R A ] - Ty e Ll B i e LI L L

REPORT 1131

DEFLECTION AND STRESS ANALYSIS OF THIN
SOLID WINGS OF ARBITRARY PLAN FORM
WITH PARTICULAR REFERENCE TO
DELTA WINGS

By MANUEL STEIN, J. EDWARD ANDERSON,
and JOHN M.-HEDGEPETA

Langley Aeronautical Laboratory,
Langley Field; Va.

Accesion For

NTIS CRA&I E
DTIC TAB
Urannounced

BV (1L — ]

By
Distiibution |

Availability Codes

-Avail and]or
Dist Special

2l |4

DTIC QUALITY INSPECTED ¥

“ ' v
’ 3
FTrYS LTI P S T T T TR o AT 5 2 - S e

b,
e A RN




REPORT 1131

DEFLECTION AND STRESS ANALYSIS OF THIN SOLID WINGS OF ARBITRARY PLAN FORM
WITH PARTICULAR REFERENCE TO DELTA WINGS'!

By Mavuet Steix, J. Epwarp Axpersoy, and Joux M. Hepcerrri

SUMMARY .

The structural analysis of arbitrary solid cantilever wings by
small-deflection thin-plate theory is reduced to the solution of
linear ordinary differential cquations by the assumption that
the-chordwise deflections at any spanwise station may be ex-
pressed in the form of a power series in which the coeflicients are
Junctions of the spanwise coordinate. If the series is limited to
the first two and three terms (that s, if lincw: and parabolic
chordwise deflections, respectively, are assumed, the differential
equations for -the coefficients are solved exactly for uniformly
loaded solid delta wings of constant thickness and of symmetrical
double-wedge airfoil scction with constant thicknes: ratio. For
cases for which exact solutions to the differential eguations
cannot be obluined, @ numerical procedure 13 derived. fozperi-
mental deflection and stress dala for constant-thickness dellit-
plate specimens of 46° and G0° swesp are presented and are
_ found to compure favorably with the present theory.

INTRODUCTION

One of the present trends in the development of high-speed
airplanes and missiles is toward the use of thin low-aspect-
ratio wings. ‘The structural analysis of these wings often
cannot be-based on beam theory since the structural defor-
mations may vary considerably from those of a beam and,
indeed, may more closely approach those of a plate. In
cases-where the wing construction is solid or nearly solid the
use-of plate theory in the analysis is particularly valid, and
it-is this type of wing which is considered in the present
report.

Exact solutions to the partial-differential equation of plate
theory are not readily obtained, cspecially for plates of
arbifrary shape and loading; however, 2 number of approxi-
mate solutions to specific problems on cantilever plates have
appeared_in the literature (see, for example, refs. 1 to 7).
Of-the approaches used in these references, only the one in
references 6 and 7 is readily. applicable to plates of arbitrary
plan form, thickness distribution, and load distribution; thus
it i3 the most useful one for the analysis of actual wings.

In reference 6 the cantilever-plate problem is simplified by
the assumption-that the deformations of the plate in tho
chordwise direction (parallel to the root) are lincar. By
minimizing the potential energy of the plate, the partial-
differential- cquation of plate theory is replaced by two

simultancous ordinary differential equations for the spanwise
variations of the bending deflection and twist.  Inreference 7
the same ordinary differential cquations are obtained in »
different manner. Refinement of the analysis by inclusion
of the effect of parabolic, cubic, or:higher-order chordwise
camber terms is indicated in reference 6, and as the order of
refinement is increased a corresponding inerease in the num-
ber of ordinary differential equations is obtained.

In the present report, which is an extension of reference 6,
a general set of ordinary differential cquations is_presented
which may be used to obtain any desired-degree of approxi-
mation to the deflection of the-plate. 'These equations are
solved exactly for several enses of delta-plates under uniform
lond first by-considering linear chordwise deformation only
and second by including the effect of parabolic chordwise
camber. Comparisons are drawn between the- stresses and
deflections computed from the equations of cach approxi-
mation and also with some experimental results,

'he -differential cquations presented contain coefficients
that depend on the plan form and stiffness distribution of the
plate and on the loading. In this-report, the plates con-
sidered in detail have coeflicients-such that the differential
equations can be solved-exactly , however, in cases for which
oxact solutions cannot be-obtained-a numerical procedure
must be used. One such procedure is derived and its
accuracy is demonstrated.

SYMBOLS

l length of plate measured perpendicular to root
c root. chord of plate
P lateral load per unit area, -positive in z-

direction
t local thickness of plate
[ average thickness of plate

3
D local flexural stiffness, 1“2‘(‘%-‘,?5
D flexaral -stiffness based on average thickness,
'Elavs

12(1—p?)
E modulus of efasticity-oi-materiai
K Poisson’s ratio
w deflection of plate,-positive in z-direction
2,9, 2 coordinates defined-in-figure -1

1 Supersades NACA TN 2621, “Delection and Stress Analysls of Thin Solld Wings of Arbitrary Plan Form With Particular Referencs to Uella Wings" by Manael Stetn, J. Edwurd
Anderson, and John M, Hedgepeth, 1052, i
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Fraure 1.—Coordinate system used in the present aualysis for a canti-
lever plate of arbitrary shape with arbitrary thickness variation,

¢n function of x, coeflicient in power series for
~
deflection w=3, g, (2)y"
ni=y

a(r), e(@) functions defining plan form (see fig. 1)

7 variable obtained by transformation ?,:1—?[-
0z, Oy normal stresses
Tay shear stress
v maximum principal stress
A aspect-ratio paranieter, ;l\/ % (1~p)
RESULTS

The derivation of. the general set of ordinary differential
cquations is given in appendix A. The general procedure
outlined in reference 6 is followed; that is, the deflection
of the plate w is expanded into a power series in y the chord-
wise coordinate with coeflicients which are functions of =
the spanwise coordinate (see fig. 1)

w= @) F @yt o)+ . . L Fonl@y” n

quation (1) is substituted into the expression for the po-
{ential energy of the plate-load combination -which is in
turn minimized by the caleulus of variations with respect
to each of the coefficients ¢,. The results of the variational
procedure appear as N4-1 simultancous differential cqua-
tions with the coefficients ¢, as unknowns.

By taking a.sufficient number of terms in the expansion
of w, the resulting-differential equations can be used to ob-
tain any desired degree of aceuracy in the solution for the
deflections of any given cantilever plate subjected to an
arbitrary lateral load. -Of most interest, perhaps, are the
particular -cases-for N=1 and N=2, which are obtained
from the general set of equations and are simplified in
appendix A. The case for N=1 (also derived in refs. 6

NI TTIIRT L, S SPTRR 16 NP Al el i el 4 ca kil
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and 7) includes linear chordwise defleetions, and the case for .
N=2 takes into account parabolic chordwise curvature. t
Although for most practical problems the solution by the
purabolic theory should be adequate, cases might exist in )
which cubic, quartic, or even higher-order chordwise terms
should be included, depending on the convergence of the '
series for the configuration considered.

The particular equations for N=1-and N=2 arc used to 1
determine the deflections and stresses of the following can-
tilever plates subjected to uniform lateral load:

(1) A45°delta plate of uniform thickness

(2) A 60° delta plate of uniform thickness

(3) A 45° delta plate of symmetrical double-wedge airfoil
section with constant thickness ratio

Fortunately, for these configurations, the solution can be
carried out-exactly by both the linear and parabolic theories,
and the details ¢f these eanct solutions are included in
appendix B, In general, however, exact solutions cannot
be obtained and some numerical method must be used.
One such-method, based on replacing- derivatives by their
first-order-approximation difference forms, is derived in
appendix.C.

A summary of the results for the three particular problems
is shown _in figures 2 to 11. Deflections obtained by the
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f DEFLECTION AND STRESS ANALYSIS OF THIN SOLID WINGS OF ARBITRARY PLAN FORM 3

linear theory and the parabolic theory for the three con-
figurations are-compared in figures 2, 3, and 4. Stresses
obtained by the linear theory and the parabolic theory
for the three configurations are compared-in figures 5, 6,
and 7. Where available, experimental deflections and
stresses arc also shown in these figures. The details of the
procedure used to obtain the experimental deflections of
the 45° and 60° uniform-thickness plates amd the experi-
iifental stresses in the 45° uniform-thickness plate are con-
tained in appendin D, whereas the experimental root stresses
for the 60° uniform-thickness plate were obtained from
referenco 8. Figures § to 11 present the comparison be-
tween deflections and stresses computed from the exact
solutions of the differential equations-and those computel
from the numerical solutions of the same equations.

DISCUSSION

The results-shown in figures 2 and-3 mndicate that, with
regurd to deflections, erther the lincar theory or the parabolie
theory is adequate for the case of u constant-thickness delta
plate subjected to a uniform load, the comparison being some-
what better for the 60° plate than for the 45° plate, If
accurate slopes-in the chordwise direction (angle of attack)
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Fraoune 3.~Deflections of a 60° delta plate of uniform thickness under
uniform load.

are desired, however, the parabolic theory must be used
because the error in the-angle of attack as computed by the
linear theory is as much as 30 percent (see figs. 2 and 3).
The appreciable anticlastic curvature, evidenced by the
expenamental results of figures 2 and 3, may be important
acrody namically and is, of course, not taken into account by
the linear theory.

The -apparent. convergence of the aforementioned series
m the cnse of the double-wedge-section plate (see fig. 4)
implics that the lincar theory is adequate for this ¢ase. The
lnck of chordwise curvature in the result obtamed by the
parabolic theory is attributable to the fact that the natural
tendenyy of the plate to huye anticlastic curyature is canceled
by the opposite tendeney of the thin edges to bend down
under the lond,  Unfortunately, no experimental results
are available for this configuration.

In figure 4 the plate-stiffness J in the nondimensional

parameter wD/pl* is:the local value of 1) at o point where

-the thickness is equal to-the average thickness of-the plate

as a whole. Thus the results of figure 4 are comparable
with the results of figure 2 on an equal-weight basis, T*
can he seen that the deflections of the double-wedge-section,
constant-thickness-ratio plate are cevervwhere less than
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Ficune 4.~Deflections of a 45° delta plate of symmetrieal double-

wedge airfoil section and constant-thickness ratio under uniforn load.
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those-of the uniform-thickness plate although they increase
rapidly near the tip. This curling-up or singulavity-in slope
at the tip is a result of using a small-deflection theory and
probal’y would not be so marked in an actual case,

The stress results for the 45° and 60° uniform-thickness
delta plates indicate that both the lincar and the parabolic
theories are adequate and that the parabolic theory is better
than the linear theory only near the root, Itshould be noted
that, although the maximum prncipal stress over a large
part of the 45° plate is plotted in figure 5, only the stresses

normal to the root along the line %—:0.0087 of the 60° plate

are_plotted in figure 6 since only these stresses are given in
reference 8. (The-maximum prineipal stress and the stress
normal to the root are theoretically -equal at the root since
the root. shear stress is zero.)

Experimental data arelacking for the double-wedge-section
delta plate and, therefore, only theoretical stresses are shown
in figure 7. As in the case of deflections, the results obtained
from the lincar theory and those obtained from the parabolic
theory are almost-coincident, the-difference being greatest
near the root. Figure 7 has also been plotted so that the
results are divectly comparable with those for the 45°

2. T T
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Froune 5~—Maximumn principal stresses in a 45° delta plate of uniform
thickness under uniform load.
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uniform-thickness plate in figure 53 on an o ual-weight
basis. As ean be expeeted, the  double-wedge-section,
constant-thickness-tatio plate is a better design structurally ,
the stres: »s in the double-wedge-section plate arve everywhere
smaller and are almost constant in the spanwise direction.

The theoretical results in figures 2 to 7 have been obtained
from exact solutions of the differential equations of the
linear and parabolic theories. In order to test the rehability
of the numerical method dertved an appendin-C, the differ-
entul cquations were also solved numeriealls, The results
shown in figures-8 and 9 indicate that the agreement is good
between the numerieal solution in which five equal intervals
were used and the eaact solution of the differential equations
for the case of the 45° uniform-thickness plate. The same
good agreement can be expected in other cases where the
thickness and load distributions are not too erratic and where
the plate stiffness does not go to zero at the tip  that ls,
when no singularitics appear at the tip.
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Froune 6.~—Normal-stress distribution near the root (nt T=0.0087) of

a 60° delta plate of uniformn {hickness under uniform load.
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Since the efficacy of the numerical-method depends on | capable of yielding arbitranly- aceurate results for any con-
how well parabolic arcs fit the various functions between | figuration. It is scen that, for the examples considered,
- stations, serious error can result from blind application. An | only-the first two or three terms m the series expansion need
examplo of the seriousness of these errors and of tho manner | be -considered to obtain adequate accuracy. In addition,
in which they can be remedied is shown in figures 10 and 11. | for-most practical plate-like wings with clamped roots the
In these figures-a comparison is made between exact and | first two or three terms will probably be adequate, although
numerical results obtained on the 45° double-wedge-scction, | problems may exist whercin more terms are needed.
constant-thickness-ratio plate. As can be expected, the The muncrical procedure, derived for application in cases
{ fve-station numerical solution fails to follow- the exact solu- | where exact solutions canuot be obtained, gives good agree-
tiont in the neighborhood of the singularity at the tip. Since | ment when compared with exaet solutions if enough stations
the region of trouble is localized at the tip, a reasonable | are takenalong thespan. ‘Ihe necessary number of stations
! remedy would be to decrease thoe spacing of the station points | s dependent on the type of thickness and loading distribution
near the tip. This decrease in spacing may-be accomplished | considered, five cqually spaced stations being enough for
cither by using & greater number of equally spaced stations | the uniform-thickness delta wing subjected to uniform
or by using unequally spaced stations crowded near the tip, | loading and ten being necessary for the double-wedge-section,
The increase in aceuracy obtained by mereasing the number | constant-thickness-ratio delta wing subjected to uniform
of equally spaced station points to ten is shown in figures | loading.
10 and 11,
CONCLUDING REMARKS
The general mothod presented herein for finding deflec- | LancLey Aproxaurticar Lanorarony,
tions and stresses of solid or nearly solid wings is, in principle, Narioxan Apvisory COMMITTEE FOR AERONAUTICS,
LaxGLey Fiewy, Va,, November 80, 1951,
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Frovre 0.—Numerical and exact solutions of the differential equations e A
{obtained by assuming linear chordwise deflections) for the maximum L ey -

principal stresses along the free edges of a 456° delta’plate of uniform
thickness under uniform load.
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Froune 10.~Numerical and exact ~olutions of the differential cquations
(obtained by assuming linear chordwise-deflections) for the deflec-
tions along the free edges of a 45° delta plate of symmetrical double-
wedge airfoil section and constant thickness ratio under uniform load
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Firaure 11.—XNumecrical-and eaact solutions of the differential equa-
tions (obtained by-assuming linear chordwizo defiections) for the

maximum prineipal-stress along the line y=§(l-—-l{> of a 45° delfa
plate of symmetrical doubleswedge airfoll section and constant
thickness ratio under uniform load.

APPENDIX A
DERIVATION- OF DIFFERENTIAL EQUATIONS
The structure considered herein is a thin, elastic, 1sotropic,

General equations. -The potential cnergy of the-system

cantilever plate of arbitrary plan form and slowly varying
thickness subjected to distributed lateral load (see-fig. 1).
By assuming that the deflection of the plate can:be -repre-
sented by a power series in the chordwise coordinate and
by applying the minimum-pctential-energy principle, a_set
of ordinary differential equations in the spanwise coordinate
is obtained from which the coefficients of the _power-series
may be determined. First the general set of equations is
derived; then the particular equations for the cases of Jinear
chordwise deflections and parabolic chordwise deflections-are
deduced from the general set and simplified.

200368=54 —2
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T'he assumption is made that the deflection w ean be represented by the power seties

X
w=§ ea()y”

Substitution of this expression for w into equation (A1) gives

t NN
Potential cnergy:-Jo dx{-,l; 20 Z}u [ampasipm’ en’ Fmun(m=1) (n==1)tnpr-3Pm et
25 nm

.
2un (== Dl pgnmi®n’ ¢ +2(1—g)m "an-{-n—IPu'Pn’I"'g p.+.¢.}
in which

)
u,af :’(’: Dy -'dy =12, ... 2N+1)
Y 1

*ea(r)
prxJ‘ ® ply)y ='dy {r=12,...N+1)
1

and the primes denote differentiation with respect to z,
Minimization of the_ potential energy by means of the valeulus of variations gives

§{Potential energy)=0

" 1 &N
=‘£ dz {§ ”% §] [anv{m-l l(¢m"69."+ §9n”‘s'r°m")+‘m n (m"" 1) ("'- l)am+n-3($’»[6¢n ’{'9'46‘»7-')'*'

N
2un(n=Dmpn-1(en’d¢ntonden’ )4 2(1 ~p)mnda,, ._,(¢“'6¢,'-§-¢"’5¢m’)]—2‘, D 6¢.}
=
Integrating by parts and collecting terms-results in

T e T

v ox .
'0=J° dx ,.Z‘)jﬁsp. {"% {@psasien’) Fpm(m—1) (@ninmipn)’ =200 =p) MRy, ten’) +o0 =1} Angnmrpn’+
- i

N N

m=0 mw=o

1
pm =1 {Ungnm1 ) =2 (I=pg) MNA gt ) }o

cantilever boundary conditions

are completely determined by these differential equations and the boundary conditions (A6), (AS), and (A9).

v e e = - e e [N — -
. .
. . . . .
1y SN T d 2o ad. i i kol A e

(A3)

Ad)

N 0
ma(m—1)(n— l)am.-wul—pm}-*-{g 3¢n’ 20 (tmansipn’ Fum (m--l)u..ﬂ-m..l}:—-{% don 25 Umengion’) 4

(AD)

Everywhere in the region of the plate, except at the boundary x=0, the variation of w is arbitrary, At x=0 the

ow
1v=-5~;_-0
yield
en(0)=p/(0)=0 (=0,1,...N) A6)
and therefore the variation in these quantities must also he zero at r=0.
Squation-(A5) is then satisfied if, in addition to equation (A6),
N
mz)ql(am{-n-ﬂﬁ’m”)”'*'l"n("l_ l) (“m»}n-l?m)”_g(l ""‘)"ln((!m-i-u—l‘l’ml)l'*'—}‘"(""' l)"n-)-n-l?m”"*‘
ma(m—1) (0= Dt pspra30m]=Vrs n=0,1,...N) (A7)
mz_ol"m+n+l¢ml'+ﬂ”'(7n—l)un-f-ﬂ-ﬂ"mlznlzo n=0.1,... ‘\Y) (As)
and
N
mE-Ol(a'” u+l‘r"'m”)’+}‘m(m-l) (am-fu-l‘r’ﬂ)’_Q\-‘ —}‘)m”“m+n—l$"mllx-l=0 ("=01 l; e 1\’) (A())

Equations (A7) form.a set of N 4-1 simulfancous ordinary differential equations for the functions ¢a(x). The functions ¢a
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Particular case of linear chordwise deflections.—If

N=1, the deflection funetion becomes

w=got e (A10)

u linear function in the chordwise direction, where ¢y is the
bending deflection and ¢, is the twist. Equations (A7)
become

((I[W“)"'*' (aﬂ”l")”-:Pl

(") A= (dgpy"")” = 2(1 = p) (Y =2

(93]
(A12)

The root boundary conditions, given by cquation (AG),
become

7o(0)=w/ (N=¢:(0) =2/ (0)=0

"T'he tip boundary conditiors, given by cquations (AS) and
(A9), become

{AIB)

(@ Ftag) ) s =0 A14)

(aen”" F 3" )1a1=0 (A13)
o) - (@er’Y Jiwi=0 (A16)
(@00 +(ase”) =2(1 =) typr femr =0 (A7)

Equations {(A11)-to (AI7} are the differential equations and
corresponding -boundary conditions presented in reference
6 @f only distributed load 15 considered) where the symbols
W and @ are used instead of gy and ¢y, respectively.

If equation (A1) is integrated twice and the boundary
conditions {A14) and (A16) are used,

1
oft=—t2 ¢,"+all£ pr.,da:’ A1)

a

Substitution of ¢d’’ into equations (A12), (A13), and (A7)
gives

(A [
i)' —=2(1~p) (ﬂl¢l')'=l’z—(§f£ ,pr dz?) (A19)

(N PR

{hie”) —2(L =)o) ]emr=0

(A20)

(A21)
in which

2

a»

by == (lg——
1 3 @

If equation (A19) is integrated once and the boundary
condition (A21)-is used,

o7 oI et ’/
ey —2(L— w1y = — jz P ‘lz—(z—:J'x LI’: dz?) (A22)

The differentinl cquation (A22) is a second-order differential
cquation in ¢/, The twist ¢, and then the bending deflection
o aro obtained-by solving equations (A22) and (A18), respec-
tively, by applying the boundary conditions (A13) and (A20).

Particular case of parabolic chordwise- deflections.—The
effect of parabolic chordwise camber may be included by

letting N=2 in the general power series (¢q. (A2)), 1f N=2,
the deflection function becomes

w=yot-Yeet e

Here ¢ represents the spanwise distribution of parabolic
chordwise camber.  For this-case the differentinl equations
(A7) become

(tiea”)” 4= (dawy”)" gy ) -+ 2p(te) " =y
(taea™)” +{ae)")" 4 (ttaes”) 7 4 2{ttyps) " -
2(0—p)lltye) +2(wedY)=py  (A24)
(sga”)" (") + (as0”) "+ 2l +tapn” 3" +
(322”1 =4 (1= ) (azp1) + 2 ) [+ Aty =ps
with_the boundary conditions

20 =¢ (0) = (0)=¢/ () =ex(D) =/ (0) =0 (A26)

(A23)

(A25)

(" - tta” -ty er” -+ 212y oy =0 (A27
(oo Haser” - dups” 4 20ta02) 1r—0 (A28)
(0" +ur” Hdse” 4 2ptypn) =0 (A29)
[(hie”) 4 (") (322" 4 20(t122) Jrar=0  (A30)
((2ea”)’ +tsen™) -+ (tops") - 2pletepn) =
2=} (et +2we Memi=0  (A31)
aage”) - (diey”) -+ (ase)”) - 2u(aspr) ~
(=) (et 20372 ) rar=0  (A32)

If-equation (A23) is infegrated twice and the boundary
conditions (A27) and (A30) are used,

a a 1t e
o=t oy =2 ¢z”—2ﬂs°z+—f f mdzt (A33)
ay aq Uy JrJz

Substitution of ¢” into the-remaining differential equations
and boundary conditions results in

(Grgr")" 4 (b20”Y" = 2(1 — ) [{asser'Y - 2a27') )

a, (1 .Y
=‘-l)z—-(a£}x " dz) (A34)

(b20")" 4 (baps")" — 41— p) [z}’ 1 2ap) 14 41— Dty

t o B ”
=p3-—2uf f M 11::’—-($J J M (/.r’) (A35)
tJz & Jr Jr
(brpr” 402" Y 2uy=0 (A30)
(") + e ) = 20 — )iy’ + 2000 lr=0 (A7)
(bapt” +byes”) pur=0 (A38)
[Gept”) 4= hser”) =4 (1= ) (@t + 2030, ) per==0  (A39)

21(0) =/ (0)=¢:(0) = ¢, (0} =20 (A40)
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in which

If equation (A34) is integrated and the boundary condition
(A37) is used,

Gret") + (b)) = 2(1 =) {10/ - 202¢)

1 @z -V [ ’
=—f P2 (II—(--—J f mda?)  (Adn)
z d1dz Jr

Thus ¢, and ¢; are obtained by solving equations (A35) and
(A41)-with the boundary conditions (A36), (A38), (A39), and
(A40). Subscquently, ¢, can be obtained by solving-equa-
tion (A33) with the boundary conditions ¢o(0)=¢,’ (0)=0,

Stresses.—After the approximate déflection of the plate
is determined from equations (A18) and (A22) or from cqua-
tions (A33), (A35), and (A41), the extreme-fiber stresses may
be calculated from the well-known cquations of thin-plate
theory, which are (see, for example, ref. 9):

5D 933‘_’,*. hw
G\ ST 3yt

6D [O*w, O
=R\ 3R

_6(~myD dw
T 3% 0y

The maximum principal stress ¢ at any point in the plate
ean be determined from

. |
0-’:"{!:;*;!'! :i:?;\’(”z_vv)2+4fnz

®




APPENDIX B
EXACT SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SOME SPECIFIC DELTA-PLATE PROBLEMS

The differential equations of appendix A for linear and
parabolic chordwise deflections are solved exactly for uni-
formly loaded delta plates of constant thickness and of sym-
metrical double-wedge airfoil section with constant thickness
ratio. The equations for deflections obtained by the linear
theory-are presénted in terms of the aspect-ratio parameter
A for-both kindk of delta plates. The equations for deflec-
tivas- obtained by the parabolic theory are presented for

R
=1 and 3:?— with y=:15 for the constant-thickness delta plate

and for ZI=1’ also with u=;.l§: for the delta plate of symmet-

rical double-wedge airfoil scetion -with constant thickness
ratio.
If the 2-axis is passed through the edge perpendicular to

the root and the substitution :n=1-=-% is made, the differen-

tinl equations are clearly of the homogeneous type for-which
the solutions are of the form z;%, where v is a constant. For
the configurations considered, the-functions that define the
plan form (see fig. 1) are then ¢;(z)=0 and c,(z)=ex, where ¢
is the root chord. In all the equations of this appendix the
primes denote differentintion with respect to the new inde-
pendent. variable 2;.

DELTA PLATE OF UNIFORM THICKNESS UNDER UNIFORM LOAD

Since the stiffness-D is a constant for uniform-thickness
plates, the coefficients in the differentinl equations-(sec cq.
(A4)) become

¢1,.=D,f,l " (Blu)
h=a- =B o | (B1b)

‘ b’z=a.—g—;:l—’=€-;—‘ xy Blc)
b;=a5—%?;=%c—6 xgd Bi1d)
p.=7’7‘i—' " (Ble)

Solution for linear chordwise deflections,—I{ the co-
cfficients gix en b) cqunhons (Bl ) are substituted into equa-
tioss (A22) and (A18) and the independent vanablo s

changed to z.=l—z; the following cquations for linear

chordwise deflections result:

]
(’.t|a¢|”)'- 16%{1‘“&.’-‘:—2 })).IE xla (BQ)
w__C . . pl* B3
v =—g T +~4~61)x, (B3)

where

A= \/ M(l —u)

"The boundary conditions to be used with these equations are
obtained from cquations (A13) and (A20) and are

go(D=p'N=wa()=e'(1)=0 B4)
@ 0" )y u0=0 B5)
The general solution of equation (B2) is

o plt

¢l’=;l|xl7"+ilzrl-"' ".i(l—-:!)?)- D;: (Bs)

where
y=yT4HT6X2

and .1y and .1, are arbitrary constants. Since A?isinherently
positive, the boundary condition- (B5) requires that A,=0.
One-integration of equation (B6) and the application of the
conditions ¢, (1)=¢;’(1)=0 yields

1 1)1‘ (:c;'/——l _x.’— 1
=3 Q=339 D¢ ¥

B7)

If equation (B3) is solved for ¢, with the conditions
eo(1) =gy’ (1)=0, the result is

=g 1= 5 6= (1-a=" 52
“’“(1 o 1'”"“)] B8)

Substitution of equations (B7) and (B8) into the equation

w=got+ Y1

gives the expression for the deflection-w of the plate under
the assumption of linear chordwise-deflections,

Solution for parabolic chordwise deflections,—If the co-
cfficients given by-equations (B1) are substituted into equa-
tions (Xil), (435, and {A33) and-the imdependent variable

is again changed to .r.-—-l-?: the following equations for

11

g




il el

12
parabolic chordwise deflections result:
@le”"Y F(xi'edr’) — 160 (i H-2fcp, ) = —2 Il))l'; n®
®9)
(artoi") 418 Gaions" =108 [ o)+ rioesy T

3 H“‘ a:.c¢,=-——-(:+ 2uN 71’-;- z* (B10)
e -—"'2- Ty —"; -Tl's@ ""‘oﬂp‘f‘r‘l‘% 1;; (Bl 1)

The boundary conditions to be used with these equations are

e =o' (D=g(=e'(D=p()=¢'(1)=0 (B12)

(@l -+ xr'cey Yrmo==0 B13)
;3 10 A
(ﬁ's”l '+-l"5 1!"’&02"):"_0:0 B14H

[(a'. ey + (xn"‘w{’)'-‘ 16)* (z:’sox’-!-— xifce) )1
(B 15)

"The homogencous solutions of the simultancous equations
(B9)-and (B10) are of the form

o= dayr!
@r=DBryy!

Substitution of these expressions into-the homogencous parts
of equations (B9) and- (B10) leads to-the following:charac-
teristic equation from which N may-be determined:

=Gl 6)\')7'+[320 (4+i-”‘_—ﬁ) M+4sox*+9]~,’—

4 [1080 Lbp y6-+80 (4+ ) )\“f-()(i)\"i‘l]——
@10)

and gives the following relationship between A and B:

r—2)(y4-1)—16N

y—i=ien |8

=~(y—1y

The particular solutions for uniform_Joading are given-by

§’ll=11pxlz
‘x"z=13p:'312
“hcu.
- 3u+l ,,2 -y
Y =, V! gt
2 H“(w l)x‘-(sv—w,v 5y De
. 4"" BN \
Bl pl
=T

"*"‘ ('w M- (87— 1)daz—1) O
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The general solution is the sum of the homogencous solu-
tions and the particular integral

[
‘0|'= E ; Az 'l+11,.)512
ne=i

&
er=23_ Buryya=14-Bya? B17)
nel
where the values y, are the six roots of the characteristic
equation (B16) and the cocflicients A,-and B, ave the co-
cificients corresponding to each of these roots. After inte-
gration ¢, becomes

6 . 3
¢.=:;‘{A.’§,'—}+A,%-+‘-1, ®B18)

The general solution for ¢ from equation (B11) is found
to be

Cnli"""-i‘prl‘-}‘O,,z.-f-O’, {B19)

whete,-for n=1,2,. .. 6,

Rt et

and

-5 2c 2uN? pl'ﬁ]
C,= A2 <1+ )I} b

The coefficients Ay to Ay, A,, €, and €, must be determined
by the-boundary conditions (B12) to (B15).
« A complete set of coeflicients is given in the following table
for delta plates with Poisson’s ratio p equal to 1/3 and with
3

>\=-i'=l/ and 5 Deflection curves plotted from these

vesults-are shown in figures 2 and 3 in which the 45° plate

3
corresponds to %:l and the 60° plate corresponds to -‘I;:—-al;

7
k2 A"p‘l" ”n;‘k‘ Cuﬁ
m ) —— - - S
Ael x-‘? Amel x-l'; Aml m}fz'l Ml x--a".

)

2

3

3

s

6

P

7

r

Substitution of equations-(B17), (218), and (B319) into the
equation

w=got-Yer-t¥es

gives the expression for the deflection w of the plate under the

assumption of parabolic chordwise deflection.




DELTA PLATE OF SYMMETRICAL DOUBLE-WEDGE AIRFOIL SECTION WITH
CONSTANT THICKNESS RATIO UNDER UNIFORM LOAD

} TFor & delta plate of symmetrieal double-wedge airfoil

section with a constant thickness ratio the thickness is a

function of £ and ¥ and is given by the following equations:

1=6'¢rlc£ (OSZIS_ El:l
i 1=061,, (:r,-—%-) L §JSc:c.>

where 4, is the average thickness. Irom these expressions
for the thickness the stiffness can be found and the coefli-
cients in tho differentinl equations become

2De _, W
= i Iy
YR
ll;‘—“--is’)" 1'15
9De*
ay== 5 I
sthe*
oM
DIV RY I
0 =270 g (B20)
Ded
bl“ll%)of* e
olc*
be"gg 41
poa2018Dc
"= "9gi00”
n
ot ot

P

Solution for linear chordwise deflections.—By use of the
coefficients given by equations- (B20), equations (A22) and

256

! 22 gon)[E2L ( %(
] (’ 1 so>\) §10 )

320 1-+p
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(A18) for linear chordwise deflections may he solved for ¢
and ¢, 'The steps in the solution are the same in form as
thoso for the uniform-thickness plate and the resulting
cquations are

40 1= - '
- L. " Trogen | @2
27('—'—) 7—-— De
4
and
1| 20 773 i—1
Po= g% ;ﬂg*“_g :Tl +l=r 4+
T=37"5-\ 75
20 2
<A;T)+§>(r,loa,x,+1—x.) w B22
-3
where

‘Yﬁ'\/ @)2-;;(_)‘)\:

Solution for paraholic chordwise deflections.—~By use of
the coeflicients given-by cquations (B20), equations (A41),
(\35), and (\'33) for- pmubollc chordwise deflections may be
solved for o5, ¢;, and ¢o. “The steps in the solution are
again the same in form-as-those for the uniform-thickness
plato and the resulting. general expressions for ¢, ¢5, and
¢o ATC

3
6 1»-'2'_1
‘Pl='§ ,‘ln L 3"”*‘11;; log,zl

B23)
’Yll_?j
& yamd 1
¢2="Z_213n$1 2+”"E (B24)
G 1
00= 33 Ot 24 Com loger +Cori 0, (B25)

where the exponents v, are the roots of- the-characteristic equation

(-

25 ?
' 222 80N ) 4
PR “A] (7 1 80X

rg 274 2
[é (7’—-243)—20%2 =0 (B26)

Forn=1,2,...

IR SI\ (U PN

6, A, By, and C, are related-by or
v -—343—-8())\’

(DE-DH 6 -8"*]
c. f- ;A,+~—;c am) (yam D)+ 22X 11,1’
'Yn_é l 2 15 [( 3)( 2) ]—pJ 5

2

By=

Cpz=—

Lprt et SEA N gg sV g 2 - . A tadietalAr. Yeved Aot s - - s aweie eon

B
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For uniform load the coeflicients in the particular integrals of equations (323), (B24), and (B25) aro

10gt SZ'+1004>\=+3201+“ e 16( i 2 x=)(10>\=4‘1)

"2 D¢ aont1) (871+10')4x=+3°o i )J) 120 (16Nt 1) (10N24-1)

B30 It 15(16NHH1)—2(20N 1 1) (q. ;,-)
27 Det 871 1~ *_“ —
(202%-1) ( + 1004)\2+300 AR ) 120 (1632 41) (10A24 l)

Oyt dy—s c’(l—}-ﬂ A )B, 317;5

The coefficients 1, to AG, Ag Cyy and G are again determined by the boundary conditions (A26), (A36), (A38), and (A39) in
which the coefficients given by equations (B20) are substituted.

For Poisson's ratio p equal to % and )\=‘1—;== 1, the solution of the characteristic equation (B26) leads to two real values and
two pairs of complex conjugate values for y.  The identity

725020 cos (b log, 2,) -1, sin (b log, )
was therefore used to transform the terms involving the complex conjugate values into real forin, 1f ([::-l and y:—:l;: the

solution is

gaz-D—l- 0.004070x,> %7~ 0.004363x,>** cos (2.825 log, 2,)}0.006803,* " sin-(2.825 log, 2,)+0.000204 ]

¢p|=-— [ —0,003896x,* #7 4 0002134 cos (2.825 log, x;) —0.006381x,* *** sin (2.825 log, ;) + 0.01794 log, x, 4 0.001763]

gm—-l;—)l« 0.0007715x,% ~0,0000708x," cos (2.825 log, ;) 4-0:001234x,199% sin (2.825 log, z,) -

0.03331x; log, :t.—0.04096:.+0.04026]

T, B S B e e T M P
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APPENDIX C
NUMERICAL PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS

In cases where the equations of the present theory cannot
be solved exactly a numerical method must be used. In
this appendix, equations (A19) and cquations (A34) and
(A35) are set up in difference form for numerical solution.
Initially the assumption is made that the functions involved
in the differential cquations are continuous and nonsingular.
In this ease, first and second derivatives can be expressed by
the standard difference forms

(sli'l
de?

(1,, J»+ ""Jn-

7,n+l ”I»+Jn-l

where e is the distance between equally spaced station points.

In the following development five equally spaced span-
wise stations are used; however, the extension to a different
number of stations ¢an be.readily made.

First, consider equation (A19) resulting from the lincar

theory
T ™ »
20 -0 @eY=p~(2[ ["nta) det) =,

") —
Because of the nature of the tip boundary conditions for
this equation, it can be conveniently put in the form
1 =q, (C1)

where

=(bypt") =21 =gl

In finding the-difference cquation equivalent to equation
(C1), the quantity (b,e,”)’ is found in matrix form, from
this expression js subtracted the mafrix equivalent of
2(1—p)aey’, the resulting expression for 7'is multiplicd by
a differentinting matrix; and the product is equated to-the
right-hand side.

. 'The quantity (bie,””)’ at the half-stations can be expressed in-matrix form as follows:

oo 1 =2 1

@ ) 1 =2
L 1

¢ 2 t‘

L

ey N

where the second subscript denotes the station point, the subscript at the root stutlon being 0 and at the tip 5.

root- boundary conditions_are now applied; namely,

Pt
P10

1
-2 1 -11#1 (02)
1

-2 1 P12

1 -2 11 1en
(1]
1213

The

#1(0)=0=.¢y

o \0)=0==¢ll"2':gl_-:j

"Thus, after the values of g;o==0 and ¢,_1== ¢, are substituted, equation (C2) becomes

e e e i s e rara,

e

#”

-

T

e .

T T I T T N T TP TV R P T A N PP P SN T APl TR A S0 ™ |
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Therefore
, (bwl”)o “bi 2 1
(OGN ) b ~2 1 P12
&)z =3 b -2 1 1913
bier")s by 1 -2 1 14
(bm”). b 1 =2 Ll g

One of the tip boundary conditions is
(bl¢l”)z-x=0=(bml")s

Thus,
(ZE2 1 -1 1 e
(blsal");lz -1 i (b
(bml”).;/z =% -1 1 (bie”):
(bml");/z . -1 1 (bl‘h”)s
(bw’l”);/z =~ 1d{(biey")s

‘The matrix equivalent for the second term of T'is

(@ “y,. i Pu
((ll¢|')3,g ‘)(1 ) [URY;] —1 1 12
20—y s ==k 502 -1 1 P18
(e in A,z -1 1 ou
(@11 )on anon L =1 1o
Tharefore T’ becomes
i -1 1 (1 - 2
Tan ) -1 1 b -2 1
T,t,n = ';l; - —l 1 bu 1 =2 1 —
T -1 1 bis 1 -2
Ton -1 budl 1 -2 1
[5RY.] 1 et
Qap —1 1 on
2(1—
‘L;L) Uy,512 -1 1 1z
(%7 -1 1 (41}
(IR ! e

The right-hand side of equation (C1) can now-be equated to the derivative of equation (C5);thus,

In -1 1 Tip
)1 -1 1 RVP
qu| € -1 1 Tsn
qu -1 11|73

Top

In order to obtain g5, the boundary condition T
7—0
at z=! must be used. In other words, 1' goes from 15, at-station 4-;- to 0 at station 5. A straight line drawn between
L J
’__—‘n]—'.u:_‘m‘ P T . S-S Y LTV P Bed Phets T0I% I y -2 S AT I ST A T T 5 T LW

.
T N a2k

(©3) i

©9 l

(C5)
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oo 2T,n " N N .
these two points would have the slope = The value of gy is considered to be this slope; therefore,
0 -1 1 iy
Q12 | -1 1 Tsp
s [=7 -1 1 Tsn
qn ~1 1|{Gn
qu/2 =111y
or
In 1 =2 1 “byo
Tz . 1 =2 1 by
' =:'. 1 =2 1 bis —
Ju 1 ~2 O3 1
Qisf2 1 1 ~92 1 .
—] [FRY;] 1 $11
t,3p 1 1 ¢z
2(1—u)
P 1,5 -1 1 en
1 -1 1 (2]
9. ) ~1 14/ l¢s

If the matrix multiplication is carried out, the difference equivalent of equation (C1) finally becomes

it ¥n
Vi , 9(1—1) [2H
a1 =‘—{j [011'—"‘2?“ [Dll} (28]
Vi 1
Q1s/2 13
where
2biot-4by+be  —2by—2b; by
~2by—2b;  byybdbptby 20,20y by
[CG)= by =2bi;—2b;y  bitdbyytby  —2b—20y
bis —2by =2y byydby
by —2by
—ay 1= W,3n 3
y,372 —ay,3p~=01,52 Q512
(D)= aysn ~0, 5=, U7

vt
Onn —0,p— 0

[N Y]
In order to determine ¢, from ¢;, use must be made of equation-(A18)

11 a
10! azme= |. rdz’-——-’ "‘|”
(4 WJ: J: i a ¥

or, by use of the boundary condition ¢y(0)=¢,’ (0)=0,

z frz 1 31 z (2 a,
'Po’=f‘=f "‘f f Pl"f”‘—f J = o/ dz?
0Jo GJz Js oJo g

—— e = R -y

(Co)
by
—2by,
by
[URY]
el ®/
Cn

B e Rt P P Y

~

. e e e s

R o
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In matrix form equation (C7) becomes ;,
wl 1 2 Vo L v
o0 11 12 1 1fay 111 tr o1t pe ™
Ya| =¢|1 1 1 ll‘l [ ll(hz 11 11 Dy =
- 1111 12 1 11 ll(lls 1 1 11 P
o trorr idlye 11 e 1 1 a2
1 -l 1/2 (asfm)o 2 en °
11 fpie ot (a2far) -2 1 P12
111 2 11 (asfa)s -2 1 e (CS)
1111 2 1 11 (as)ts)s 1 =2 1 on L
Uy ol r o (asfy), 1 =2 1d]es .
"Thus, if the values of g, (which can be determined numerically or analytically according to preference and feasibility) are e
known, the values of ¢, can he found by solving equation (C6) and the values of ¢o in turi by means of equation (C8).
The foregoing development applies-to the case where only linear chordwise deformations are allowed. A similar pro-
cedure is followed in expressing the differential equations pertaining=to the parabolic theory in difference form, only the
resulis are shown herein.
The matrix equivalent to cquations (A34) and (A35) is ()
n i t Ten
Sy, 20— 1, 4(1—g) o
| | FlGI==21D) | g(C-=E0) (e
qu/ ou e
0s/2
1815 (21 (C9)
I o .
V22 on :
-1 4(1~—~ 1 8(1— '
| |ie-2 gy | Loy |, 1
o | 41— ) E) e .
i
a2l L dle
where
r2bu0+4bnl+bn2 _lell—2bll2 b’ﬂ !
—2%m=2by  butdbutbs  —2e—2bs  bs P
loul‘ 7bn2 ""an2""2qu bn2+4bn$+bnl —Qbus—'-? ¢ bni :
bns ""Qba—?bnl bu&‘*"“’nl —anl—
bns ~2bp L H
! {
12— An,202 An,312 \
(%Y =y, 32— Up 512 Quep2 : ¢
(Dnj= Q52 —Qp,spp—0n, 312 Un, 112 i
LAR7 ~Uyip= Aoz Onor
a9 ==, g2.
e
®

I TN S R N
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[UT]
[
1=

g

ay .
(ln_l

and ¢ and g, are the right-hand sides of equations (A34) and (A35), respectively; that is,

=Gt [ [ i)
n=p2—  J: :pl dx
1Y ] ”
‘I:=1’a—2uf f m da:’—(g-ef f ™ (I.c*)
rJsr O Jr Jr

With ¢; and ¢2 known, ¢ can be obtained by use of equation (A33)

en] [ 1/2 [ 1/ay
ewl 111 21 ’ ay
el |1 1 1 2 11 ¢
Poi 1111 12 1 11
el L1 1 2 v i L
(aza)o I 2
(asfah 7—2 1
(/) 1 -2
(@far)s 1
L (az/a2)s L
(asfas)o anr 2
(asfar), i—!.’ 1
(asfar): -1 =2
(asjay)s 1
L (asfar) JL

Tt should be noted that, as canbe expected, the matrix
equations (C6) and-(C8).are merely specinl cases of-equations
(G9) and (C10), -respectively, In addition, the square
matrices n equations (C6) and {C9) are symmetrie, & result
that is consistent-with the fact that-the differential equations
under consideration are self-adjoints

tu the beginning of this appendix the assumption was made
that.the-functicns mvolved in the differential equations are
continuous and nonsingular., The-difference solution, how-
ever, may be adequate for some cases in-which this assump-
tion-is not strictly correet. For instance, the deflections of
a plate-with a discontinuous stiffness distribution-could con-
ceivably be not. very different from the deflections of a plate
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with a continuous stiffness distribution closely approximating
the discontinuous distribution exeept in the neighborhood of
the discontinuity. The results yielded by the difference solu-
tion in this case would he those assuciated with the continuous
stiffness distribution.  The number of stutions may have to
be inereased, however, in order to minimize the insceuracy
mtroduced by the discontinuity or, in other cases, by a
singularity. The case of the symmetrical double-wedge air-
foil scction, constant-thickness-ratio delta plate, discussed
in the body of this report, is an example of a treatment of 2
singularity. In this case, although the solution is singular,
adequate accuracy is obtained by the difference solution if
ten equal intervals are used.
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Test specimens.—The specimens tested were: (1) a 45°
right-triangular plate clamped along one leg and (2) a 60°
right-triangular plate clamped along the longer leg.  Each
specimen, cut from 245-T4 aluminum-alloy sheet of 0.250-
inch thickness, had a length perpendicular to the clamped
edge of 30 inches.

Method of testing.—Figure 12, a photograph of the-test
sctup, shows the methods of clamping, loading, and measure-
ment-of defiections. A 1,000,000-pound clamping load (held
constant during the test)-was applied to the root area of each
specimnen and a uniform load of 0.204 psi wau applied by
2.inch washers giving a tip deflection-in cach care of approx-
imately $ inch,

The deflections were measured by dial gages placed at-the
points indicated in figures 2 and 3.

Stresses were obtained from the 45° specimen only. On
this specimen, 13 resistance wire rosette strain. gages were
placed at the points.indicated in figure 5. Flic plate was
loaded with 2-inch washers in four increments of 0.0847 psi
per increment and the maximum tip-deflection was 1.13
inches. Readings of -all the strain-gages were recorded at
cach increment of loading. 7

Analysis and discussion of data.—The deflection w was
plotted ir figures 2 and 3 in terms of- the nondimensional

Fraure 12.~Deflection test setup of the 45° delta plate under uniform
load.
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APPENDIX D
DEFLECTION AND STRESS EXPERIMENTS ON SOME TRIANGULAR CANTILEVER PLATES

parameter wl)/pl', in which the clastic constants were taken

a8 F5=10.6¢10® psi and p=§-- It was found that the dial-

gago forees reduced the tip deflection of the plate by approx-
imately 2 percent; however, since this error is of the same
order of magnifude as that in the material properties and
from other-sources, no corrections are made in the results
presented.

The readings of each of the 39 individual strain gages were
plotted against load, and the slope of each of the resulting
linear curves was taken as the average strain per unit load
of the individual gage. The principal stresses were then
calculated and plotted in figure 5 in terms of the nondimen-
sional parameter of?/plt,
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